
Order Tracking Analysis 

1. Introduction 

    Mostly, dynamic forces excited in a machine are related to the rotation speed; hence, 

it is often preferred to analyze vibration signals in terms of orders rather than 

frequencies. Orders relate the spectral components with the rotational speed and 

commonly followed by “xRPM” or simply “x” for recognition such as 1x, 3x, 6.5x and 

so on. Order tracking analysis (OTA) is the process of extracting useful information 

such as amplitude, frequency and phase for one order or more from the vibration (or 

acoustic) response to an input rotation speed. It has special importance when the order 

characteristics vary with time such as during machine speed-up and coast-down. Also, 

smearing or leakage problem in FFT analysis is effectively reduced when using order-

based spectrum due to the fact that harmonic and sub-harmonic components will 

coincide with the analysis lines. Order tracking is of particular importance in the 

evaluation of rotor-bearing system characteristics, field balancing and performance 

evaluation in automobile industry. 

    The earliest order tracking techniques were based on analog devices. Vibration signal 

is fed to a tracking bandpass filter whose center frequency is controlled by a tachometer 

(speed) signal obtained from a tacho-generator. The output of the filter is passed to a 

peak or RMS detector to obtain the amplitude of the filtered signal. An x-y plotter can 

be utilized to plot the amplitude against the rotational speed. This method is very time-

consuming and can process only limited sweep rates; therefore, it is rarely used at this 

time. With the vast development of digital equipment and related software during the 

end of the last century, order tracking techniques have been mainly digitally 

implemented for more than 20 years. Digital techniques are very accurate and fast such 

that most of them can be implemented in real time. Digital order tracking techniques are 

divided into two main categories, waveform reconstruction and non-reconstruction 

schemes. Both categories and their sub-classes, according to their appearance, will be 

discussed in details in the following sections. 

2. Non-Reconstruction Order Tracking Techniques 

    As the name refers, the time signal does not need to be reconstructed to obtain the 

required information about a particular order. Alternatively, these techniques extract the 

useful information such as amplitude and phase in the frequency or order domain. The 



obtained parameters represent the averaged values over a certain time interval. This 

interval can be given in terms of constant time interval, speed interval, percentage speed 

interval or number of revolutions. The choice of the interval depends on the technique 

used and test conditions. These techniques are ranging from simple constant-∆f  FFT-

based to more sophisticated techniques such as computed order tracking (COT) and 

time-variant discrete Fourier transform (TVDFT). 

2.1 FFT-Based Order Tracking 

    The simplest and commonly applied digital order tracking technique is based on 

Fourier transform of the time signal. Since FFT is the most computationally efficient 

algorithm to perform discrete Fourier transform, the signal is divided into a number of 

blocks with power of two blocksize. FFT is performed for each block and the results are 

displayed as FFT waterfall or spectrogram plot. The FFT waterfall is a 3D plot in which 

the FFT spectra are displayed in cascaded form. It has special importance in detecting 

the resonances as the machine speed sweeps over the entire range. The spectrogram (or 

spectrograph) is a 2D plot which is similar in some way to the scalogram used in 

representing CWT coefficients. However, the horizontal axis in the spectrogram 

represents frequency while the vertical axis represents the time or rotational speed. The 

amplitudes of the FFT components are color coded in order to be easily detected by 

visual inspection. Fig. 1 demonstrates the spectrogram obtained from analyzing 

vibration signal during coast-down test of a large turbogenerator.  In addition to the 1x 

and 2x components, which may be caused by residual unbalance and misalignment, 

there is large amplitude at 37
th

 harmonic which was excited by a fan of 37 blades in the 

turbine cooling system. The constant-frequency components, such as structural 

resonances, appear as vertical lines in this type of spectrograms. 



 

Figure-1 Spectrogram of Coast-down Test for a Large Turbogenerator 

    Despite the fact that this technique is fast and easy to apply, it suffers from a number 

of limitations. The blocksize (time interval) is not related to the RPM of the machine 

and this can be problematic in two ways. At low shaft speed, the interval is too short to 

cover the low or sub-harmonic orders which results in power leakage (smearing) 

between closely-spaced orders. On the other hand, at high shaft speed, the interval 

becomes too long to capture rapid variations and spikes in the signal. Moreover, since 

the analysis interval covers a certain sweep in the speed, the power of the high-

frequency components, such as gearmesh frequency and its sidebands, spreads over 

several FFT lines resulting in smearing problem. For the above reasons, the order-based 

analysis becomes highly desirable. 

2.2 Constant Angle Order Tracking 

    From the above discussion, it is clear that analysis time interval should be adequately 

large for low machine speeds and reasonably small for high speeds. To achieve this 

goal, the constant angle of rotation can be used instead of constant time interval. Given 

that the blocksize remain constant, this implies that the signal must be sampled at 

constant ∆θ rather than constant ∆t. The straightforward method to accomplish this 

scenario is to use a shaft encoder with suitable number of pulses per revolution (PPR) to 

drive the ADC sampling clock and the anti-aliasing tracking filter. However, the shaft 
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encoder requires special considerations which make it difficult to apply in many cases. 

Furthermore, a sophisticated and high cost measurement circuit is required to interact 

with the encoder pulses. To overcome these problems, an alternative method, known as 

Computed Order Tracking (COT), was developed and patented by Potter at the Hewlett 

Packard. In fact, constant angle order tracking is also known as COT due to popularity 

of this algorithm. 

    COT as proposed by Potter is based on resampling the constant ∆t time signal to 

obtain a new set of values with constant ∆θ. The resampled data is now in the angle 

domain, as opposed to the original time domain. The resampling process is 

computationally demanding and it includes two steps, oversampling and then 

interpolation to obtain the required equi-angle samples. This approach requires an 

accurate tachometer signal to obtain reliable data about the machine speed. The intervals 

of resampling are calculated by integrating the speed function. By resampling, any 

variable-frequency order component is converted into regular sinusoid signal. When 

DFT or FFT is used to process the resampled signal, the spectral (analysis) lines will 

represent constant-order components since the transform is based on angular domain 

rather than time domain. The order resolution ∆o can be found in similar fashion to the 

frequency resolution of the normal Fourier transform, i.e. it is the reciprocal of the total 

angle of rotation of N-samples Θ: 
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   There is an equivalent Shannon’s sampling theorem in the order domain which can be 

stated in the following equations: 
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    Where os is the angular sampling rate and oNyq is the angular Nyquist rate or the 

maximum order that can be processed. It is worth mentioning that when N is carefully 

chosen to satisfy integer number of revolutions, the smearing problem is further 

minimized even when there is no smoothing window function. However, when there is 

one non-harmonic component or more, the smoothing window is required to reduce 



smearing problem. For FFT algorithm which needs a power of 2 blocksize, the block 

can be zero-padded to provide the extra samples required beyond the integer number of 

revolutions. When the order-based FFT is used to analyze the same vibration signal 

discussed in previous section, the resulting spectrogram will have constant-order lines 

as can be shown in Fig. 2. The order components are more clear and easier to indentify 

than that in the previous spectrogram. 

 

Figure 1 Order Based Spectrogram 

2.3 STFT Order Tracking 

    Short-time Fourier transform (STFT) is a Fourier-related transform used to analyze 

local sections of a non-stationary signal. It has the ability to characterize the signal 

amplitude and phase both in time and frequency. In fact, Gabor transform, which forms 

the basis of Wavelet transform, was inspired by the idea of STFT. The continuous STFT 

of a signal x(t) is given by: 
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     Where w(t) is the window function, usually a Hann window or Gaussian bell centered 

around zero. It is simply the Fourier transform of the signal multiplied by time-shifted 

window function. The discrete STFT can be expressed as follows: 

2. Order

37. Order

2.8k

2.4k

2.0k

1.6k

1.2k

0.8k

8.71

3.31

1.26

0.48

0.18

0.07

0.04

0.01

Order

S
p

e
e
d

 (
R

P
M

)

mm/s

1. Order

0                5              10               15              20             25               30              35          40          



 ( , ) ( ) ( )
i n

n

X m x n w n m e
ωω

∞

−

=−∞

= −∑  (4) 

    Where m represents shifting factor in terms of time samples. In contrast to FFT-based 

order tracking, STFT includes multiplying the successive blocks by a window function. 

Also, the blocks are usually overlapped by a certain amount to avoid artifacts or 

blocking effect. The overlapping percentage is controlled by the step of shifting factor 

m. By varying the support length of the window function, different time and frequency 

resolutions can be obtained. Short window function provide good time resolution but on 

the expense of frequency resolution. The amplitudes squares (power) of ( , )X m ω  are 

used to plot STFT spectrogram with frequency on the vertical axis and time on the 

horizontal axis or optionally vice versa. 

2.4 Time-Variant DFT Order Tracking 

    This approach does not require resampling the data, instead it is based on DFT which 

has kernel (basis) of variable frequency over the data block; hence “time-variant” prefix 

comes out. In fact, TVDFT is a special case of chirp z-transform which is defined as the 

Fourier transform with kernel of variable frequency and damping over time. The kernel 

frequency for a specific order is excerpted from the tachometer signal. Like the COT 

method, the TVDFT is able to provide leakage free order analysis but without the need 

to resample the data in the angle domain. Thus, it is much less computationally 

demanding than COT, making it more suitable for real-time analysis for rapidly varying 

speeds and large number of response channels. According to the TVDFT, the individual 

order/frequency components can be evaluated as follows: 
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    Where ,k nφ  is the angular displacement for order component k up to the time n∆t and 

ω(t) is the instantaneous angular speed. Of course, to reduce smearing as much as 

possible, the blocksize needs to cover an integer number of revolutions. The order 

resolution is the reciprocal of the number of revolutions covered by the block. As a 

numeric example, when it is required to obtain 0.1x order resolution, the analysis record 



length should be extended over 10 shaft revolutions. If this is not the case, then a 

smoothing time window function, such as Hann or Blackman window, can be used to 

reduce smearing. In fact, since the data is sampled at constant ∆t, it is not guaranteed 

that the exact integer number of revolution is obtained. Also, if there are non-harmonic 

components contained in the signal, smearing is more likely to occur even when using 

integer number of revolutions. Therefore, it is desirable to use a smoothing window 

function.  

    To reduce correlation among the closely-spaced orders and/or crossing frequency 

components, the orthogonality compensation matrix (OCM) can be used. Due to non-

orthogonality of TVDFT kernels, evaluation of each order/frequency component 

requires direct summation according to eq. 5; hence, this method is more suitable to 

extract a certain number of orders rather than getting order-spectrum to plot the 

spectrogram. The amplitudes and phase angles of extracted orders can be plotted against 

the shaft speed to get the so called Bode plot or frequency response function (FRF). The 

amplitude and/or frequency axes can optionally be in log or linear scale.  

In this scheme, the Orthogonality Compensation Matrix (OCM) is used to decorrelate 

the estimated orders according to the following linear equations:  
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    Where kX� are the correlated components, Xk are the actual (uncorrelated) components 

and cij are the cross-correlation or orthogonality compensation terms. Each term in the 

OCM represents how much a kernel interacts with another. Since the accuracy of 

compensation depends on the quality of the correlated components estimation, special 

care must be taken in calculating these components to achieve better accuracy. In many 

cases, Hann or Blackman window will help in smoothing out some undesirable blocking 

effect. The correlated (uncompensated) components can be estimated from the 

following equation: 
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    The cross-correlation terms cij can be calculated by applying the kernel of order i to 

the conjugate kernel of order j [50]: 
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    To solve for the uncorrelated components, the OCM must be inverted and multiplied 

by the vector of correlated components, or alternatively Gauss elimination can be used 

to solve the system of linear equations. The second approach is preferable due to ease of 

implementation, reduced processing time and enhanced stability as compared to the 

inversion scheme. However, another consideration must be taken in applying the 

compensation scheme. Unless, all orders with significant energy are included in the 

compensation scheme, the detected components will suffer from distortion due to 

contribution of uncompensated order(s). This requires pre-knowledge of all effective 

orders in the signal prior to applying the compensation scheme. Normal FFT based 

tracking analysis may be used to estimate the effective orders.   

3. Reconstruction Order Tracking Techniques 

    These schemes enable to extract the order/frequency components and reconstruct 

their time histories. Instead of estimating the average amplitude and phase angle over a 

certain block size, the time history allows the determination of instantaneous values at 

any time. However, in the presentation of data as spectrogram, the overall time signal 

can be segmented and the average or peak amplitude of each order/frequency 

component may be used to represent the amplitude over the segments. While 

reconstruction order tracking methods are the most accurate techniques, they require 

extensive computations which limit their use in practical daily analysis procedures. 

These techniques include the Vold-Kalman and Gabor based order tracking. 

3.1 Vold-Kalman Order Tracking 

    The Kalman filter was first adapted to order tracking by Vold and Leuridan in 1993 

where the first generation Vold-Kalman order tracking (VKOT) scheme was proposed. 

Later, Vold et al. have developed the technique further and proposed the second 



generation VKOT scheme with improved capabilities such as close-orders and cross-

orders separation. The basic idea behind the Vold-Kalman filter is to define local 

constraints which state that the unknown orders are smooth (having slowly varying 

amplitude) and that the sum of the orders should approximate the total observed signal. 

The relationship with the measured data is called the “data equation” while smoothness 

condition is called the “structural equation”. In fact, structural equation works like low-

pass filter. The second generation data equation is given by: 

 ( ) ( ) ( )ni
y n x n ne φ η= +  (9) 

     Where y(n) is the observed (measured) signal, x(n) is the filtered order, η(n) is the 

error term and nφ is the angular displacement of the required order. The structural 

equation of the second generation VKOT is given by: 

 ( ) ( )px n nε∇ =  (10a) 

    Where p∇ represents the backward difference of order p and ε(n) is the non-

homogeneity term. For example for two-pole low-pass filter action (p=2), the structural 

equation becomes: 

 ( ) 2 ( 1) ( 2) ( )x n x n x n nε− − + − =  (10b) 

    When it is required to separate multiple closely-spaced or cross orders, the data and 

structural equations are applied for all of the orders simultaneously. The drawback of 

this approach is that the resulting system of equation is very large as compared to the 

system obtained from applying data and structural equations to extract one order only.  

3.2 Gabor Order Tracking 

    The STFT discussed earlier is generally not invertible, i.e. it is not possible to 

reconstruct the time signal from the STFT coefficients. However, when certain 

conditions are applied, Gabor expansion can be used to recover time signal from the 

modified STFT. For a given set of discrete time signal x(n), the modified STFT is given 

by: 
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   Where ∆M is the time-sample step that is a positive integer, K is the total number of 

frequency bins. The total number of time points M = N / ∆M. The resulting coefficients X 

(m, k) sometimes known as Gabor coefficients with total size = M x K . Critical sampling 

occurs when K = ∆M which gives N Gabor coefficients, while oversampling occurs 

when K > ∆M. In case of oversampling, the transform in eq. 11 contains redundancy 

from a mathematical point of view. The original data samples can be reconstructed as 

follows : 
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     The above expansion is traditionally known as Gabor expansion. The window 

function h(n) is called synthesis window as opposed to analysis window w(n). The key 

issue of implementing Gabor expansion is the choice of both the analysis and synthesis 

window functions. In fact, the position of these windows can be interchanged; hence, 

w(n) and h(n) are called “dual functions”. Gabor order tracking (GOT) is used to extract 

a specific order component according to the following steps: 

1. After selecting the appropriate analysis window, synthesis windows and the Gabor 

sampling rate, the Gabor coefficients are evaluated from eq. 11. 

2. The resulting Gabor coefficients are multiplied by a mask window to keep only the 

relevant coefficients while other coefficients are set to zero. The center frequency of 

the mask window is determined by the tachometer signal and the required order while 

its bandwidth is carefully selected. 

3. Performing Gabor expansion using the masked Gabor coefficients to obtain the 

filtered order/frequency component. 

    Step 2 and 3 can be repeated for all the required orders. Despite the computational 

efficiency of the above scheme as compared to VKOT, it is only suitable to extract well-

spaced non-crossing orders.  

 


